High reliability sensing circuit for deep submicron spin transfer torque magnetic random access memory

Wang Kang, Weisheng Zhao, J.-O. Klein, Youguang Zhang, C. Chappert and D. Ravelosona

A high reliability offset-tolerant sensing circuit is presented for deep submicron spin transfer torque magnetic tunnel junction (STT-MTJ) memory. This circuit, using a triple-stage sensing operation, is able to tolerate the increased process variations as technology scales down to the deep submicron nodes, thus improving significantly the sensing margin. Meanwhile, it clamps the bit-line voltage to a predefined small bias voltage to avoid any read disturbance during the sensing operations. By using the STMicroelectronics CMOS 40 nm design kit and a precise STT-MTJ compact model, Monte Carlo simulations have been carried out to evaluate its sensing performance.

Introduction: Spin transfer torque magnetic tunnel junction (STT-MTJ) memory has emerged as a promising candidate for the next generation high-density, low-power and scalable non-volatile random access memory technology [1]. The MTJ nanopillar is mainly composed of three layers: one oxide barrier sandwiched between two ferromagnetic (FM) layers as shown in Fig. 1a. It presents two resistance values (R_P or R_R) depending on the relative magnetisation orientations of the two FM layers. The resistance difference is characterised by the tunnel magneto-resistance ratio ($TMR = (R_P - R_R)/R_R$). A typical STT-MTJ bit cell consists of a MTJ connected in series with an access transistor between a bit-line (BL) and a source-line [2], as shown in Fig. 1b. Only a bidirectional spin polarised low current I_{write} larger than a threshold value I_{c} can switch the MTJ state, and a read current I_{read} can be used to sense the MTJ state [1]. It is worth noting that I_{c} should be sufficiently less than I_{c} to avoid any read disturbance (RD) during the sensing operation. However, low I_{c} leads to a small sensing margin (SM) accordingly due to the small TMR ratio and process variations. Therefore there exists a conflict, and it is of great importance to design the best trade-off between SM and RD for the sensing circuits. Conventional sensing circuits, such as the dynamic current-mode (DCM) sensing amplifier [3], the self-reference sensing scheme [4] and the pre-charge sensing amplifier (PCSAs) [5], cannot overcome the conflict between SM and RD. Moreover, they suffer from low reliability owing to the reduced supply voltage and increased process variations, as technology scales down to the deep submicron nodes (e.g. 40 nm). In this Letter, we propose an offset-tolerant triple-stage sensing circuit to tolerate the process variations and overcome the conflict between SM and RD.

Fig. 1 Structure of STT-MTJ cell

a Vertical MTJ nanopillar structure
b Typical 1T1MTJ bit cell structure

Proposed sensing circuit: Fig. 2 shows the schematic of the proposed sensing circuit, which is mainly composed of two parts: a current converter and a comparator. One bit of information is stored in each data MTJ as R_P or R_R. The reference cell is formed by paralleling two serially connected MTJs as shown in Fig. 2, and its resistance R_{ref} equals ($R_P + R_R$)/2. The access transistors for both data and ref cells are with minimum feature size. The triple-stage sensing operation is detailed as follows. In the first stage, after a data cell is selected by enabling a word-line and a BL, a biasing voltage V_{bias} is added to the operational amplifier A_0 of the current converter. The current flowing through the transistor N_0 is $I_{bias} = V_{bias}/R_{n0}$, here, R_{n0} denotes the resistance of the selected data cell, which includes the resistance of both the MTJ R_{m0} and the access transistor R_{a0}. Then, the voltage V_a induced by the load PMOS P_0 (P_0 can be also replaced by a resistor R_{col}) is stored in the switched capacitor C_0 as V_{ref} by enabling the switch gate S_0. In the second stage, we select a reference (ref) cell by enabling the ref-line and a ref-select-line. The current flowing through N_0 is $I_{ref} = V_{bias}/R_{ref}$, here R_{ref} denotes the resistance of the selected ref cell, which includes the resistance of both the ref MTJs and the access transistor. Then the induced voltage is stored in the switched capacitor C_1 as V_{ref} by enabling S_1. Finally, in the third stage, the V_{data} stored in C_0 and the V_{ref} stored in C_1 are connected to a differential latch-type comparator A_1, and the difference between V_{data} and V_{ref} is amplified to a digital signal ‘0’ or ‘1’. Since we use the same sensing path to generate both I_{n0} and I_{ref}, we can eliminate the mismatch in the sensing circuit induced by the process variations, leading to offset-tolerant currents I_{n0} and I_{ref}. The difference ratio between I_{n0} and I_{ref} is expressed as follows:

$$\frac{|I_{n0} - I_{ref}|}{I_{ref}} = \left| \frac{V_{bias}/R_{m0} - (V_{bias}/R_{ref})}{V_{bias}/R_{ref}} \right| = \frac{R_{ref} - R_{m0}}{R_{ref}} \quad (1)$$

The induced voltage V_{data} and V_{ref} can be further amplified by a suitable choice of P_0 or R_{col}, thus increasing the SM. The process variation or mismatch in the comparator is very small compared to the amplified SM and can be further reduced by optimising the switched capacitors and the amplifier A_1. Meanwhile, since we apply a small $V_{bias} \leq 0.1$ V at the current conveyor, the currents flowing through the data cell and ref cell are sufficiently small to avoid any RD. For example, assume $I_{c0} \approx 60 \mu A$, $R_{m0} \approx 4.5$ kΩ and $R_P \approx 3.5$ kΩ at 40 nm technology node, when the resistance \times area $(R \times A)$ product is 5 Ω·μm² and the TMR ratio is 150%, respectively. Then the maximum current is $I_{bias} \approx 12.5$ μA, which is far less than I_{c0}.

Monte Carlo simulation: As discussed above, two parameters, i.e. TMR ratio and V_{bias}, have most important impacts on the sensing performance of the circuit. By using the STMicroelectronics CMOS 40 nm design kit [6] and a compact STT-MTJ model [7], Monte Carlo simulations have been performed. Here, we consider 3σ and 1% variations, respectively, for the CMOS transistors and STT-MTJs. Figs. 3a and 3b show the average SM and read current of the circuit with respect to TMR ratio and V_{bias}, respectively. The maximum read current is $I_{read} \approx 10.81$ μA and it leads to zero RD during the sensing operation. The total sensing time per bit is ~ 4.3 ns, including two 2.0 ns pulses for the data and ref cell sensing at the first two stages and ~ 0.3 ns for the third-stage amplifying. The total power consumption per bit sensing is ~ 40.0 Ω, composed of ~ 35.0 Ω for the first two stages and ~ 5.0 Ω for the third stage. Fig. 4 shows the sensing error rate of the proposed circuit compared to the DCM sensing amplifier [3] and the PCSA [5].
Conclusion: An offset-tolerant triple-stage sensing circuit for STT-MTJ memory is presented in this Letter. It tolerates the process variations and solves the conflict between SM and RD in deep submicron technology nodes. Monte Carlo simulations based on a 40 nm technology node are carried out to illustrate its high reliability performance.

Acknowledgments: This work was supported by the French national agency projects ANR-MARS, ANR-DIPMEM, the CNRS project NVICP, the CSC exchange programme and the PhD Innovation Foundation of the BUAA.

© The Institution of Engineering and Technology 2013
12 July 2013
doi: 10.1049/el.2013.2319
One or more of the Figures in this Letter are available in colour online.
Wang Kang, Weisheng Zhao, J.-O. Klein, C. Chappert and D. Ravelosona (IEF, University Paris-Sud, CNRS, UMR8622, Orsay 91405, France)
E-mail: weisheng.zhao@u-psud.fr
Youguang Zhang (Electrical Engineering Department, Beihang University, Beijing 100191, People’s Republic of China)
Wang Kang: Also with the Electrical Engineering Department, Beihang University, Beijing, China

References